

SMOS solar flux product: Performance and applications to Space Weather

Manuel Flores-Soriano

Space Weather Research Group. Universidad de Alcalá

For the SMOS Flares Consortium

SMOS 1.4 GHz solar observations

- How good?
- What for?
- Why even bother?

Solar processes observed by SMOS

Solar activity cycle

Solar radio bursts (SRB)

Solar flares

Coronal mass ejections (CME)

SMOS solar observations quality assessment

Data calibration

Objective:

Compare and (if necessary) recalibrate the SMOS observations with calibrated observations from radio telescopes

Reference ground data

- Humain Solar Radioastronomy Station (HSRS)
 - Background emission from August 2015 to December 2020
 - SRBs observed by both instruments (but only three have intensity > 5000 sfu)
- Radio Solar Telescope Network (RSTN)

General discrepancies between SMOS and HSRS

Very small differences on average (4-5 sfu)

SMOS vs HSRS depending on flux level

SMOS vs RSTN depending on flux level

SMOS vs the 4 RSTN stations

SMOS vs HSRS vs RSTN – Example

Is recalibration necessary?

Is recalibration necessary?

Seasonal signal drops no longer present

Data calibration

Conclusions

Discrepancies between SMOS and reference radio observatories generally not larger than discrepancies that the references have with each other.

Robust internal calibration, with potential for improvement by better understanding how SMOS forms the solar image, more than by comparing with reference observatories.

This new version removes known calibration problems from SMOS v6 and v7.

Data validation

Objective:

Evaluation of the performance of the new SMOS solar flux prototype under different solar and instrumental scenarios

Validation scenarios include

- Instrumental and algorithmic matters
- Response to weak solar emissions
- Response to solar radio bursts

Data validation

Instrumental and algorithmic matters:

Some problems reported in Flores-Soriano et al. (2021).

- Artifacts during see-land transitions no longer present
- RFI flagging
 - SRBs no longer flagged as RFI
 - Excellent performance finding RFIs but also overreacting
- No signs of saturation during the strongest SRBs
- Three methods used for testing uncertainties (S/N) with good agreement between them
- No orbital nor seasonal dependencies found (with exception on the linear polarization)

Unphysical excess linear polarization in Stokes Q

Correlation of Stokes Q with solar activity cycle

Unrotated TDS median Stokes Q and Stokes U signal

Unphysical excess linear polarization in Stokes Q

Seasonal dependence

SMOS sensitivity to weak solar signals

Solar rotation

SMOS sensitivity to weak solar signals

SMOS sensitivity to weak solar signals

Weak SRB (in good observing conditions)

SRB with the Sun behind the antenna

SRB during worst-case scenario

Circular polarization of SRBs: Comparison with NoRP

SMOS applications in space weather

Monitoring of CME occurrence

Almost every flare with a 1.4 GHz SRB is related to a CME

The amount of flux released at 1.4 GHz correlates with the speed, angular width and kinetic energy of the CMEs

Flores-Soriano et al. (2021). <u>https://doi.org/10.1029/2020SW002649</u> CME data from <u>https://cdaw.gsfc.nasa.gov/CME_list/</u>

SRB impact on GNSS - Example case

● Good Threshold for good tracking Poor Very poor O No signal

0°

Expected

Importance of SRB polarization

Correlation between GPS L2 signal fades and RSTN SRBs (Stokes I)

RSNT solar radio bursts intensities in decreasing order (10³ sfu)

Correlation between GPS L2 signal fades and SMOS RHCP SRBs

SMOS RHCP solar radio bursts intensities in decreasing order (10³ sfu)

Impact on L-band air control radars

Conclusions

SMOS 1.4 GHz solar observations:

How good?

- Comparable with dedicated instruments
- Not affected by day/night cycle

• What for?

- Studies of 1.4 GHz SRBs with circular polarization
- Space weather monitoring and post-event analyses (CMEs, GNSS, radar...)
- Ionosphere and geomagnetic field modelling (complement to 10.7 cm Penticton radio observations)

• Why even bother?

- No other instrument now with similar functionality
- Potential for near real-time 24h operations
- Data since 2010

Thanks for your attention!!

Acknowledgements: We are very thankful to Deimos Space for their help processing the SMOS data. This work was supported by ESA contract "Synergic use of SMOS L1 Data in Sun Flare Detection and Analysis" and MINECO project AYA2016-80881-P. We acknowledge the use of data from GOES, STEREO, the RSTN, NoRP and the SOHO LASCO CME Catalog from the CDAW Data Center.